
결론적으로,  연구는  HBOT가  다음을  포함하여  상당한  세놀리틱  효과를  유발할  수  있음을  나타냅니다.

방법:  64세  이상,  35명의  건강하고  독립적으로  생활하는  성인을  대상으로  매일  60정을  제공받았습니다.

각기.

T‑세포독성  노화  세포  비율은  HBOT  이후  ‑10.96%±12.59(p=0.0004)까지  크게  감소했습니다.

HBOT는  정상적인  비병리학적  노화  성인  집단에서  TL  및  노화  세포  농도에  영향을  미칩니다.
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특정  고압  산소  요법(HBOT)  프로토콜을  사용하는  간헐적인  고산소  노출은  다음을  유발할  수  있습니다.

*동등  기여

저산소증  중에  일반적으로  발생하는  재생  효과.  현재  연구의  목적은  다음과  같은지를  평가하는  것이었습니다.

노화  과정의  특징에는  텔로미어  길이(TL)  단축과  세포  노화가  포함됩니다.  반복됨

세션  및  포스트  HBOT는  25.68%±40.42(p=0.007),  29.39%±23.39(p=0.0001)  및  37.63%±52.73(p=0.007),
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노화  T  헬퍼의  수는  HBOT  이후  ‑37.30%±33.04만큼  유의하게  감소했습니다(P<0.0001).

서론:  노화는  생리적  능력의  점진적인  상실을  특징으로  합니다.  세포  수준에서  두  가지  핵심
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결과:  T  헬퍼,  T  세포  독성,  자연  살해  세포  및  B  세포의  텔로미어  길이가  20%  이상  크게  증가했습니다.
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평가되었다.
마지막  HBOT  세션  이후.  말초  혈액  단핵  세포(PBMC)  텔로미어  길이  및  노화

노화  인구에서  텔로미어  길이와  노화  세포의  제거가  증가합니다.
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HBOT  노출.  전혈  샘플은  기준  시점,  30번째  및  60번째  세션,  1~2주  동안  수집되었습니다.
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HBOT을  따릅니다.  가장  두드러진  변화는  30번째  세션,  60번째  세션  에서  증가한  B  세포에서  나타났습니다.
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고압산소요법은  텔로미어  길이를  늘리고  분리된  혈액  세포의  면역노화를  감소
시킵니다.  전향적  연구
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노화
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소개

노화는  생리학적  완전성의  점진적인  상실로  특징지어질  수  있으며,  이로  
인해  기능이  손상되고  질병  및  사망에  대한  취약성이  초래됩니다.  이  생
물학적

악화는  암,  심혈관  질환,  당뇨병,  알츠하이머병의  주요  위험  요인으로  
간주됩니다.  세포  수준에서  노화  과정의  두  가지  주요  특징은  텔로미어  
길이  단축과  세포  노화입니다[1].
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결과

노화

세포  노화는  텔로미어  단축[10]뿐만  아니라  비텔로미어  DNA  손상과  같은  
TL과  무관한  기타  노화  관련  자극으로  인해  발생할  수  있는  세포  주기의  정지
입니다[1].  노화의  주요  목적은  면역체계를  통해  손상된  세포의  제거를  촉발
하여  손상된  세포의  증식을  방지하는  것입니다.  노화에  따른  노화  세포의  축
적은  이들  세포의  생성  증가  및/또는  제거율의  감소를  반영하며,  이는  결국  손
상을  악화시키고  노화에  기여합니다[1].

텔로미어  길이

기준선과  비교하여  T‑helper  텔로미어  길이는  30번째  세션과  HBOT  이후
에  21.70±40.05(p=0.042),  23.69%±39.54만큼  크게  증가했습니다.

(p=0.012)  및  29.30±38.51(p=0.005)입니다(그림  2).  그러나  반복  측정  
분석에서는  유의미하지  않은  경향을  보여줍니다(F=4.663,  p=0.06,  표  2  및

현재  연구의  목적은  HBOT가  노인  성인의  TL  및  노화  유사  T  세포  집단에  영
향을  미치는지  여부를  평가하는  것이었습니다.

35명의  개인이  HBOT에  배정되었습니다.  5명의  환자는  기본  평가를  완료하
지  않아  제외되었습니다.  기본  평가를  완료한  30명의  환자  모두  중재를  완료
했습니다.  혈액  샘플의  품질이  낮기  때문에(낮은  세포  수  또는  기술자  오류)  
4명의  환자는  텔로미어  분석에서  제외되었고  10명의  환자는  노화  세포  분석
에서  제외되었습니다(그림  1).  환자  제외  후  코호트의  기본  특성  및  비교는  
표  1에  제공됩니다.  세  그룹  간에는  유의미한  차이가  없었습니다(표  1).

TL  및  노화  세포  축적에  대한  HBOT의  효과를  조사했습니다.텔로미어는  게놈  안정성을  유지하는  염색체  끝에  위치한  직렬  뉴클레오티드  반복입니다.  텔로
미어는  지연  DNA  가닥의  끝  부분을  완전히  복제할  수  없기  때문에  복제(유사분열)  중에  짧
아집니다[2].  4~15킬로베이스  사이로  측정되는  텔로미어  길이(TL)는  매년  ~20~40베이스
씩  점차  단축되며  다양한  질병,  낮은  신체적  성능  및  뇌의  피질  얇아짐과  관련이  있습니다
[3‑5].  TL이  임계  길이에  도달하면  세포는  복제할  수  없으며  노화  또는  프로그램된  세포  사
멸로  진행될  수  있습니다[6].  Goglinet  al.  TL이  더  짧은  성인의  사망률이  증가한다는  것
을  입증했습니다  [7].  단축된  TL은  직접적인  유전적  특성일  수  있지만  스트레스,  신체  지구
력  활동  부족,  과도한  체질량  지수,  흡연,  만성  염증,  비타민  결핍  및  산화  스트레스를  비롯한  
여러  환경  요인도  TL  단축과  관련되어  있습니다[2,  8,  9 ].

그림  2).

기준선과  비교하여  B  세포의  텔로미어  길이는  30번째  세션,  60번째  세션  및  
HBOT  이후에  25.68%±40.42(p=0.007),  29.39%±23.39(p=0.0001)  
및  37.63%±52.73(p=)  크게  증가했습니다.  0.007),  각각  (그림  2).  반복  
측정  분석은  유의미한  그룹  내  효과를  보여줍니다(F=0.390,  p=0.017,  표  2  
및  그림  2).

점점  더  많은  연구에서  텔로미어  단축  속도를  줄일  수  있는  여러  약리학적  제
제가  발견되었습니다[11,  12].  지구력  훈련,  세포  대사  및  산화  스트레스를  
목표로  하는  다이어트  및  보충제를  포함한  여러  생활  방식  중재는  TL3  에  상
대적으로  작은  효과(2‑5%)를  보고했습니다.  [2,  8,  9].

기준선과  비교하여,  세포독성  T  세포는  30번째  세션에서  18.29%
±45.62(p=0.11)만큼  유의미하지  않게  증가한  다음,  60번째  세션에서  
24.13%±40.88(p=0.0019),  19.59로  유의  하게  증가했습니다.  HBOT  이
후  %±33.98(p=0.023).  반복  측정  분석에  따르면  30회  세션  이후에는  추
가적인  유의미한  효과가  없었습니다  (F=1.159,  p=0.310,  표  2  및  그림  2).

고압산소치료(HBOT)는  1절대기압(ATA)보다  높은  환경압에서  100%  산소
를  활용해  신체  조직에  용해되는  산소량을  증가시키는  치료법이다.  특정  
HBOT  프로토콜을  사용하는  반복적인  간헐적  고산소  노출은  고산소  환경에
서  저산소  상태  동안  일반적으로  발생하는  생리적  효과,  즉  고산소‑저산소  역
설을  유도할  수  있습니다[13‑16].  또한  HBOT이  뇌  혈류의  국소적  변화와  
관련된  메커니즘을  통해  건강한  노인의  인지  향상을  유도할  수  있다는  것이  
최근  입증되었습니다[17].  세포  수준에서  HBOT는  저산소증  유도  인자(HIF),  
혈관  내피  성장  인자(VEGF)  및  시르투인(SIRT)의  발현,  줄기  세포  증식,  미
토콘드리아  생물  발생,  혈관  신생  및  신경  발생을  유도할  수  있음이  입증되었
습니다[18].  그러나  현재까지  어떤  연구도  이루어지지  않았다

기준선과  비교하여,  자연  살해  세포의  텔로머  길이는  30번째  세션  에서  유의
하게  증가했고  (p=0.045),  60번째  세션에서는  20.56%  ±33.35(p=0.013)
만큼  증가했습니다.  HBOT  이후,  텔로미어  길이는  HBOT  이후  22.16%
±44.81  증가했습니다(p=0.06,  표  2  및  그림  2).  반복  측정  분석  결과,  30
회  세션  이후에는  추가적인  유의미한  효과가  없는  것으로  나타났습니다  
(F=0.812,  p=0.391).
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그림  1.  환자  흐름도.
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논의

그룹  내  효과가  있는  세션(F=8.547,  p=0.01,  표  2  및  그림  3).

T‑세포독성  노화세포  비율은  30일  에  ‑12.21%±8.74(P<0.0001)로  유의하
게  감소했습니다.

그룹  내  효과가  있는  세션(F=6.916,  p=0.018,  표  2).

HIF‑1알파

노화  T‑헬퍼의  수는  30  회기와  60  회기에  각각  ‑19.66%±80.03(p=0.09),  
‑11.67%±94.30(p=0.20)만큼  유의하지  않은  감소를  보였다 .  그러나  
HBOT  이후  노화  T  도우미의  수가  ‑37.30%±33.04만큼  크게  감소했습니
다(P<0.0001,  그림  3).  반복측정분석에서는  30일  이후에도  유의미한  지속효
과를  나타냄

HBOT  세션,  60번째  HBOT  세션(0.002)에서  ‑9.81%±9.50,  HBOT  이후  
‑10.96%±12.59(p=0.0004)(표  2  및  그림  3).  반복  측정  분석에서는  30일  
이후에도  유의미한  지속  효과를  나타냄

인구  노령화에서는  텔로미어  길이가  20%  이상  증가하며,  B  세포가  가장  눈에  
띄는  변화를  보입니다.  또한,  HBOT는  노화  세포의  수를  10‑37%  감소시켰으
며,  T  보조  노화  세포가  가장  큰  영향을  받았습니다.

노화세포

이로  인해  식이  요법,  보충제(오메가‑3,  호두  등),  신체  활동,  스트레스  관리  및  사회적  

지원을  포함하는  여러  가지  중재  연구가  이루어졌습니다.  호두가  풍부한  식단을  사용하
여  인지적으로  건강한  노인을  대상으로  실시한  2년간의  실험에서는  대조  식단과  비교할  
때  텔로미어  길이를  보존하는  경향이  미미한  것으로  나타났습니다[19].  노인을  대상으
로  12주  동안  저주파  폭발형  저항  훈련의  효과를  평가한  또  다른  연구에서는  텔로미어  
길이가  개입군에서  큰  증가  없이  더  잘  보존된  것으로  나타났습니다[20].  최근  연구에  
따르면  6개월간  유산소  지구력  훈련이나  고강도  인터벌  트레이닝을  실시한  결과  텔로미
어  길이가  최대  5%  증가한  것으로  나타났습니다[21].

텔로미어  길이와  생활  방식  변화  사이에는  상당한  수의  연관성이  관찰되었습니
다.

추가적인  체중  감량,  요가  및  스트레스  관리  기술은  텔로미어  길이의  상당한  
변화를  보여주지  못했습니다[22‑25].  그러나  이들  연구의  대부분은  항산화  활
성과  텔로머라제  활성  사이에  유의미한  상관관계를  보여주었습니다[22‑25].

많은  유전적,  환경적  요인이  텔로미어  단축과  관련되어  있지만  가장  일반적으
로  제안되는  메커니즘은  산화  스트레스입니다.  산화  스트레스는  생산  간의  불
균형으로  인해  발생할  수  있습니다.이  연구에서는  인간  최초로  매일  HBOT  세션을  반복하면  PBMC가  증가할  수  

있다는  사실이  밝혀졌습니다.

HIF‑1alpha  수준은  60번째  세션  에서  10.54±3.39에서  19.71±3.39로  
증가했으며  (p=0.006),  2주  후  HBOT  수준인  16.81±7.65는  기준선과  크
게  다르지  않았습니다(p=0.16).
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활성  산소종(ROS)  및  세포  제거제. 및/또는  산화  스트레스와  텔로미어  길이는  지난  수십  년  동안  논의
되어  왔습니다.  인간  세포  배양  연구에서는  가벼운  산화  스트레스
가  텔로미어  단축을  가속화하는  반면  항산화제는  지속적으로  나타
나는  것으로  나타났습니다.

텔로미어는  산화성  DNA  손상에  매우  민감하여  텔로미어  단축  및  기
능  장애를  유발할  수  있습니다.  산소와의  연관성

안
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표  1.  기본  특성.
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그림  2.  HBOT에  따른  텔로미어  길이  변화.  평균+SEM  *p<0.05,  **p<0.01,  ***p<0.001.
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ROS의  T1/2  보다  길면  정상  산소  상태로  돌아가고  반복적인  과산소  노출  후  제거제  
수준이  상당히  높아지고  항산화  활성이  증가합니다  [13,  18].  따라서  신체  운동  및  칼
로리  제한과  유사하게  매일  반복되는  HBOT  프로토콜은  호메시스  현상을  유발할  수  있
습니다.  단일  노출은  ROS  생성을  급격히  증가시켜  항산화  반응을  유발하고,  반복  노출
되면  반응이  보호됩니다  [13,  18].

그러나  이는  본  연구에서와  같이  인간의  복잡한  생물학적  시스템이  아닌  고압  인큐베이
터에서  성장한  분리된  세포를  기반으로  한  것입니다.  현재  연구와  유사하게,  강렬한  고압
산소에  노출된  다이버를  대상으로  한  이전의  1년간의  전향적  관찰  연구에서는  백혈구의  
텔로미어가  상당히  늘어난  것으로  나타났습니다[31].  현재  연구에서  사용된  HBOT  프
로토콜은  소위  고산소  저산소  역설이라고  불리는  반복적인  간헐적인  고산소  노출에  의
해  유발된  효과를  활용합니다[13,  18].  이러한  간헐적인  고산소  노출은  항산화제  유전
자의  증가된  상향  조절과  증가된  ROS  생성에  적응하는  항산화제/제거제  생산을  포함
하는  적응  반응을  유도하여  ROS/제거제  비율이  점차  정상적인  산소  환경  하의  비율과  
유사하게  됩니다.  그러나  제거제  제거  반감기  (T1/2)  가  상당히  길기  때문에

병리학적  상태(당뇨병,  염증성  질환,  파킨슨병  등)에  대한  여러  임상  연구에서는  산화  스
트레스  지표,  활성  산소종  제거제  수준  및  텔로미어  길이  사이의  상관관계를  보여주었습
니다[28].  그러나  건강한  사람에서는  유사한  결과가  나타나지  않았다[29].

자유  라디칼  제거제는  단축  속도를  감소시키고  세포  증식  수명을  증가시킵니다  [27].

또한  간헐적인  고산소  노출은  저산소증  중에  발생하는  많은  생리적  반응을  유도합니다
[13].  HBOT은  저산소  유발  인자(HIF)라고  불리는  전사  인자의  방출을  유도하고  이들
의  안정성과  활성을  증가시킵니다[14].  결과적으로,  HIF는  혈관  내피  성장  인자  및  혈관  
신생  유도,  미토콘드리아  생합성,  줄기  세포  동원  및  SIRT1  증가된  활성을  포함한  세포  
연쇄반응을  유도합니다[18].  우리의  연구는  반복적인  HBOT  노출에  의해  증가된  HIF  
발현이  유도되고,  이는  비모닉  환경에서  HIF  수준의  정상화를  향해  점차  감소한다는  것
을  확인합니다.

세포  배양물을  고압  환경에  노출시키는  것은  이전에  상당한  산화  스트레스와  조기  세포  
노화를  유도하는  것으로  제안되었습니다[30].

현재,  노화  세포를  유전적으로  또는  약리학적으로(세놀리틱  약물)  제거하는  많은  개입
이  동물  모델에서  개발되었으며  인간에서의  안전성  및  유효성  평가를  기다리고  있습니다
[33].  이번  연구에서는  안전성이  확립되어  임상적으로  이용  가능한  비약리학적  방법을  
제시하고  있습니다.
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그림  3.  HBOT에  의한  노화  세포  변화.  평균+SEM  *p<0.05,  **p<0.01,  ***p<0.001.

굵은  글씨의  P  값  <0.05.
()에  표시된  P‑값은  기준선과  비교됩니다.

22450www.aging‑us.com

표  2.  HBOT  이후  텔로미어  길이와  노화  세포  변화.

노화
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재료  및  방법

노화

병리학적  인지  저하가  없고  독립적으로  생활하며  기능적,  인지적  상태가  좋은  
64세  이상의  성인  35명이  등록되었습니다.  이  연구는  2016년부터  2020년까
지  이스라엘의  Shamir  (Assaf‑Harofeh)  의료  센터에서  수행되었습니다.  포
함된  환자는  포함  전  작년에  심장  또는  뇌혈관  허혈  병력이  없었습니다.

그럼에도  불구하고  몇  가지  강점을  강조해야  합니다.  본  연구에서  CD28은  노화  세포에  
대한  바이오마커로  사용되었지만  CD57은  T  세포  노화에  대한  확인  마커로  사용할  수  
없었습니다.  전체  PBMC를  하나의  그룹으로  사용하는  대신  특정  백혈구  집단에  대해  
바이오마커를  평가했습니다.  고립된  HBOT  효과가  측정되었고  참가자들은  생활방식  변

화(예:  영양  및  운동),  약물  또는  가능한  혼란  요인으로  작용할  수  있는  기타  개입을  하
지  않았는지  모니터링되었습니다.

과목

넷째,  혈액보존  및  평가를  위해  선택한  방법으로  인해  텔로머라제  활성을  평가
하지  못했다.

요약하면,  이  연구는  HBOT가  노화  인구에서  텔로미어  길이의  상당한  증가  
및  노화  세포  제거를  포함하여  상당한  세놀리틱  효과를  유도할  수  있음을  나타
냅니다.

표준  기술을  사용하여  기준선,  HBOT  프로토콜의  절반  지점(30번째  세션),  마지막  
HBOT  세션  당일(60번째  세션)  및  마지막  HBOT  후  1‑2주에  전혈  샘플을  EDTA  튜브
에  수집했습니다.  세션.

현재  연구에는  고려해야  할  몇  가지  한계와  장점이  있습니다.  첫째,  제한된  표
본  크기를  고려해야  합니다.  둘째,  통제그룹이  부족하다.  그러나  이  연구는  다
른  개입에서는  관찰되지  않았던  TL  및  노화  세포  제거에  대한  인상적인  결과
를  제시합니다.  더욱이,  우리  코호트의  기본  텔로미어  길이  값은  노령화  인구에  
대한  예상  값과  일치합니다[45‑47].  셋째,  장기추적조사에서는  효과의  지속기
간이  아직  결정되지  않았다.

연구의  한계

고압  산소  요법은  치유되지  않는  상처,  방사선  손상은  물론  다양한  저산소증  
또는  허혈성  사건(예:  일산화탄소  독성,  감염  등)에  대해  잘  확립된  치료  방식입
니다.  최근  몇  년  동안  전임상  및  임상  시험에서  증가하는  증거는  특발성  돌발
성  감각신경성  청력  상실[34],  뇌졸중  후  및  외상  후  뇌  손상[35‑41],  중추  감
작  증후군을  포함한  신경학적  징후에  대한  HBOT의  효능을  입증합니다.  섬유  
근육통  증후군  [42,  43],  연령  관련  인지  저하  [17],  알츠하이머병  동물  모델  
[44]  등이  있습니다.  처음으로  이번  연구는  기능  제한  질환이  없는  노화된  인
간의  세포  수준에  대한  생리학적  효과를  평가하는  것을  목표로  했습니다.

혈액  샘플

압축/감압  속도는  1미터/분이었습니다.

그러나  적용된  압력,  시간  및  HBOT  노출  횟수와  관련된  용량  반응  곡선과  
HIF  발현  및  관련  재생  효과와의  관계는  아직  완전히  이해되지  않았으며  최적
의  HBOT  프로토콜을  찾으려면  추가  연구가  필요합니다.

사전  동의서에  서명하고  기본  평가를  거친  후  피험자는  HBOT에  배정되었습니다.  측정  지
점은  기준선,  치료  프로토콜의  절반  지점(30번째  세션),  마지막  HBOT  세션  당일  및  
HBOT  후  1‑2주에  평가되었습니다.

시험  기간  동안  생활  방식과  식습관의  변화나  약물  조정은  허용되지  않았습니
다.

연구  프로토콜은  이스라엘  샤미르  의료  센터(Shamir  Medical  Center)의  
기관  검토  위원회(Institutional  Review  Board)의  승인을  받았습니다.

프로필에  따르면  노화  세포  개체수가  감소합니다.  우리의  프
로토콜에는  고산소  저산소  역설을  활용하고  산소  독성의  위
험을  최소화하기  위해  각  세션  동안  3번의  공기  휴식을  포함
하여  2  ATA에서  100%  산소의  60  세션이  포함되었습니다.  
흥미롭게도  TL과  노화  세포  감소는  모두  30번째  세션에서  최
고조에  달했습니다.

본  연구는  전향적  임상시험으로  수행되었습니다.

개입

연구  설계

HBOT  프로토콜은  Multiplace  Starmed‑2700  챔버(독일  HAUX)에서  관
리되었습니다.  이  프로토콜은  매일  60개의  세션,  3개월  동안  주당  5개의  세션
으로  구성되었습니다.  각  세션에는  2ATA에서  90분  동안  마스크로  100%  산
소를  호흡하고  20분마다  5분간의  공기  휴식이  포함되었습니다.

제외  기준은  다음과  같습니다:  지난  3개월  동안  어떤  이유로든  HBOT  치료를  
받은  적이  있는  자,  작년에  악성  종양의  병력이  있는  자,  병리학적  인지  저하,  
중증  만성  신부전(GFR  <30),  조절되지  않는  당뇨병(HbA1C>8),  단식  포도당
>200),  면역억제제,  MRI  금기사항(BMI>35  포함),  활동성  흡연  또는  폐질환.

연구  코호트에는  이스라엘  Shamir  의료  센터에서  연구된  대규모  정상  노령  인
구  집단의  일부인  HBOT로  치료받은  환자만  포함되었습니다
(NCT02790541[17]).
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그림  4.  T  도우미  하위  모집단에  대한  Flow  Fish  데이터  분석의  예.  각  혈액  샘플은  데이터  수집  전에  PNA  프로브  (b)  또는  없이  (a)  항체  염색(CD3,  CD4,  CD8,  CD16,  CD19)
으로  염색되었습니다 .
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상층액을  제거한  후  각  샘플에  라벨을  붙였습니다.
면역표현형검사

텔로미어  길이

저산소증  유발  인자(HIF‑1alpha)

인산염  완충  식염수(PBS)를  사용하여  전혈을  희석했습니다.  밀도  구배  분리는  Lymphoprep
이  채워진  Leucosep  튜브를  사용하여  수행되었습니다.  그런  다음  튜브를  25°C에서  10분  
동안  1000  xg로  원심분리했습니다 .  원심분리  후,  세포층(연막)을  피펫을  통해  즉시  수집하
고  50mL  원추형  원심분리  튜브로  옮기고,  충분한  1X  PBS로  50mL의  부피로  재현탁한  다
음  25°C에서  10분간  300xg로  원심분리했습니다 .

CD3+CD4+CD28‑null  T  세포(노화  T  헬퍼)  및  CD3+CD8+CD28‑null  T  세포(노화  T  세
포독성)의  백분율을  유세포  분석으로  결정했습니다.  PBMC는  VioBlue  접합  항CD3,  
Viogreen  접합  항CD8,  PE‑VIO  770A  접합  항CD4  및  APC‑VIO  770A  항CD28  항체
(Miltenyi  Biotec)로  염색되었습니다.  MACSQuant  Flow  Cytometer(Miltenyi  
Biotec)를  사용하여  세포를  분석했습니다.  그런  다음  CD4+  또는  CD8+  T  세포  집단  내  
CD28null  T  세포의  백분율을  계산했습니다.

분석을  통해  CD3+/CD4+(T‑helper),  CD3+/CD8+(T‑세포독성),  CD3+/CD56+(자연  
살해자)  및  CD19+(B‑세포)에  대해  상대  텔로미어  길이(RTL)를  계산했습니다.  RTL  값은  
G0/1  세포의  DNA  지수를  보정하여  각  샘플의  텔로미어  신호와  대조  세포(TCL  1301  세포
주)  사이의  비율로  계산되었습니다.  세포당  텔로미어  끝의  수와  염색체당  텔로미어  길이를  표
준화하기  위해  요오드화  프로피듐  염색을  사용하여  샘플  세포와  대조  세포를  DNA  배수성
에  대해  별도로  분석했습니다.  FACS  분석  예는  그림  4를  참조하세요.

말초혈액단핵세포(PBMC)  분리

고정  및  투과화(Life  Technologies)  후  APC  접합  항‑HIF1a  항체  또는  해당  Isotype  
Control(R&D  시스템)을  사용하여  세포내  HIF1a  염색을  수행했습니다.  세포를  
MACSQuant  Flow  Cytometer(Miltenyi  Biotec)로  분석하고  PBMC를  발현하는  
HIF1a의  백분율을  결정했습니다.

텔로미어는  Dako  PNA/FITC  키트  프로토콜(코드  K5327)에  따라  라벨링되었습니다.  
PBMC(샘플  세포)와  TCL  1301  세포주(대조  세포)의  혼합물로  구성된  단일  세포  현탁액에
서  DNA를  프로브가  없는  혼성화  용액의  존재  하에  미세원심분리  튜브에서  82°C에서  10분
간  변성시켰습니다.  플루오레세인이  결합된  PNA  텔로미어  프로브를  포함하는  혼성화  용액
에.  혼성화는  실온(RT)의  암실에서  밤새  진행되었습니다.  혼성화  후에  40°C의  세척  용액을  

사용하여  혼성화  후  10분  동안  두  번  세척했습니다.  그런  다음  추가  유세포  분석을  위해  샘플
을  적절한  완충액  내  CD4+,  CD8+,  CD3+,  CD19+  및  CD56+  접합  항체로  표지했습니다
[48 ,  49].  각  샘플은  이중으로  실행되었습니다.  유세포  분석에  이어
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